4.34 Software Testing

Software Engineering 4.35

SOFTWARE TESTING
4.1 SOFTWARE TESTING FUNDAMENTALS

4.1.1 Introduction

Software testing determines when a software system can be released and gauges future performance. Testing is a major source of feedback and provides a basis for interaction with project stake holders with the growing complexity of software systems, it is very common to spent 30 to 50% of software development budget directly on software testing. Software testing encompasses a rich spectrum of testing strategies which includes dynamic versus static testing and white (glass) box testing versus black box testing Dynamic testing or dynamic analysis requires that software be executed with test data. Static testing or static analysis does not require software to be executed with test data but focussed on program proving, symbolic execution, inspections and code walkthrough. Hence, testing is the process of executing a program with the intent of finding errors. Testing requires that the developer discard preconceived notions of the “correctness” of software just develop and overcome a conflict of interest that occurs when errors are uncovered. A good and successful test is one that uncovers an undiscovered error. All the test that are carried out should be traceable to customer requirements at the sametime exhaustive testing is not possible.

4.1.2 Testing Objectives

The following rules can serve as testing objectives.

1. Testing is a process of executing a program with the intent of finding an error.

2. A good test case is one that has a high probability of finding an as yet undiscovered error.

3. A successful test is one that uncovers an as yet undiscovered error.

4.1.3 Testing Principles

Before applying methods to design effective test cases, a software engineer must understand the basic principles that guide software testing. The various testing principles are listed below:

· All tests should be traceable to customer requirements. The most severe defects are those that cause the program fail to meet its requirements.

· Tests should be planned long before testing begins. All tests can be planned and designed before any code has been generated.

· Testing should begin “in the small” and progress towards testing “in the large”. The first tests planned and executed generally focus on individual components. As testing progresses, focus shifts in an attempt to find errors in integrated clusters of components and ultimately in the entire system.

· Exhaustive testing is not possible.

· To be most effective, testing should be conducted by an independent third party. The term most effective mean the testing that has the highest probability of finding errors.

4.1.4 Attributes of a Good Test

1. A good test has a high probability of finding an error.

2. A good test is not redundant.

3. In a group of tests that have a similar intent, time and resource, the test that has the highest likelihood of uncovering a whole class of errors should be used.

4. A good test should be neither too simple nor too complex. Each test should be executed separately.

4.1.5 Testing types

4.1.5.1 Manual testing

This type includes the testing of the Software manually i.e. without using any automated tool or any script. In this type the tester takes over the role of an end user and test the Software to identify any un-expected behavior or bug. There are different stages for manual testing like unit testing, Integration testing, System testing and User Acceptance testing.

Testers use test plan, test cases or test scenarios to test the Software to ensure the completeness of testing. Manual testing also includes exploratory testing as testers explore the software to identify errors in it.

4.1.5.2 Automation testing

Automation testing which is also known as Test Automation, is when the tester writes scripts and uses another software to test the software. This process involves automation of a manual process. Automation Testing is used to re-run the test scenarios that were performed manually, quickly and repeatedly. Apart from regression testing, Automation testing is also used to test the application from load, performance and stress point of view. It increases the test coverage; improve accuracy, saves time and money in comparison to manual testing.

4.2 INTERNAL AND EXTERNAL VIEWS OF TESTING

Software testing methods are traditionally divided into external view (white-box testing) and internal view(black-box testing). These two approaches are used to describe the point of view that a test engineer takes when designing test cases.

4.2.1.
White Box Testing

White box testing is the detailed investigation of internal logic and structure of the code. White box testing is also called glass testing or open box testing. In order to perform white box testing on an application, the tester needs to possess knowledge of the internal working of the code.

The tester needs to have a look inside the source code and find out which unit/chunk of the code is behaving inappropriately.

4.2.2.
Black Box Testing

The technique of testing without having any knowledge of the interior workings of the application is Black Box testing. The tester is oblivious to the system architecture and does not have access to the source code. Typically, when performing a black box test, a tester will interact with the system’s user interface by providing inputs and examining outputs without knowing how and where the inputs are worked upon.

4.3 WHITE - BOX TESTING

White-Box Testing is called as glass-box testing. It is a test case design method that uses the control structure of the procedural design to derive test cases.

The programmer uses his own understanding and access to the source code to develop test cases.

Benefits of White-Box Testing

· Focused testing: The programmer can test the program in pieces. It’s much easier to give an individual suspect module a thorough workout in glass box testing than in black box testing.

· Testing coverage: The programmer can also find out which parts of the program are exercised by any test. It is possible to find out which lines of code, which branches, or which paths haven’t yet been tested. Tests that will cover the areas not yet touched can be added.

· Control flow: The programmer knows what the program is supported to do next, as a function of its current state.

· Data integrity: The programmer knows which parts of the program modify any item of data. By tracking a data item through the system, the programmer can spot data manipulation by inappropriate modules.

· Internal boundaries: The programmer can see internal boundaries in the code that are completely invisible to the outside tester.

· Algorithm-specific: The programmer can apply standard numerical analysis techniques to predict the results.

Various White-Box Testing techniques

1. Basis path testing

2. Condition testing

3. Data flow
testing

4. Loop testing

4.4 Basis Path Testing

The basis path method enables the test case designer to derive a logical complexity measure of a procedural design and use this measure as a guide for defining and use this measure as a guide for defining a basis set of execution paths. Test cases derived to exercise the basis set are guaranteed to execute every statement in the program at least one time during testing.

Flow graph notation

Flow graph is a simple notation for the representation of control flow. Each structured construct has a corresponding flow graph symbol. Flow graph comprises node, edges and regions.

Flow graph node: Represents one or more procedural statements.

Edges or links: Represent flow control.

Regions: These are areas bounded by edges and nodes

Each node that contains a condition is called a predicate node and is characterized by two or more edges eliminating from it.

4.4.1 Control Flow Graph (CFG)

A Control Flow Graph describes the sequence in which the different instructions of a program get executed. Control Flow Graph describes how the control flows through the program. In order to draw the control flow graph of a program, first consider the number of the statements in the program. An edge from one node to another node exists if the execution of the statement representing the first node can result in the transfer of control to the other node. The flow graph depicts logical control flow using the notations given below in Fig 4.1.

Each circle is called as flow graph node, represents one or more procedural statements. A sequence of process boxes and a decision diamond can map into a single mode. The arrows on the flow graph are called edges or links, represent flow of control and are similar to the flowchart arrows. An edge must terminate at a node, even if the node does not represent any procedural statements. Area bounded by edges and nodes are called regions.

When compound conditions are encountered in a procedural design, the generation of a flow graph becomes slightly more complicated. A compound condition occurs when one or more boolean operators (logical OR, AND, NAND, NOR) is present in a conditional statement. Each node that contains a condition is called a predicate node.

[image: image1.emf]
Fig.4.1 Logical Control Flow

4.4.2. Cyclomatic Complexity

Cyclomatic complexity is a software metric that provides a quantitative measure of the logical complexity of a program. When used in the context of the basis path testing method, the value computed for cyclomatic complexity defines the number of independent paths in the basis set of a program and provides us with an upper bound for the number of tests that must be conducted to ensure that all statements have been executed atleast once.

[image: image2.emf]
Fig. 4.2 Sample Flow Chart

An independent path is any path through the program that introduces atleast one new set of processing statements or a new condition. When stated in terms of flow graph, an independent path must move along atleast one edge that has not been traversed before the path is defined. The flow chart can be given below in Fig. 4.2.

Translation of sample flow chart to flow graph as in Fig. 4.3.

[image: image3.emf]
Fig. 4.3 Set of Independent Paths for the Flowgraph

Path
1;
1–11

Path
2;
1–2–3–4–5–10–1–11

Path
3;
1–2–3–6–8–9–10–1–11

Path
4;
1–2–3–6–7–9–10–1–11

 The combinations of various path will derive the various test cases. Complexity is computed in one of three ways.

1) The number of regions of the flow graph correspond to the cyclomatic complexity.

2) Cyclomatic complexity, V(G) for a flow graph G, is defined as V(G) = E–N+2. E = number of flow graph edges N = number of flow graph nodes

3) Cyclomatic complexity, V(G), for a flow graph G, is also defined as V(G) = P + 1

P = number of predicate nodes contained in the flow graph G.

Referring the
flow graph, the complexity can be computed by the algorithm as

Algorithm 1 : The flow graph has four regions.
Algorithm 2 : V(G) = 11 edges – 9 nodes + 2 = 4.

Algorithm 3 : V(G) = 3 predicate node +1 = 4

Deriving Test Cases

1) Draw the control flow graph

2) Determine V(G)

3) Determine the basis set of linearly independent paths.

4) Prepare the test case that will force execution of each path in the basis set.

4.4.3
Graph Matrices

Another interesting way to computer the cyclomatic complexity is to develop a software tool that assists in basis path testing, a data structure called a graph matrix.

A graph matrix is a square matrix whose size is equal to the number of nodes on the flow graph (Fig. 4.4). From, the flow graph is represented as connection matrix as in Fig. 4.5.

[image: image4.emf]
Fig. 4.4 Sample Flow Graph

[image: image5.emf]
Fig. 4.5 Connection Matrix

Each row with two or more entries represents a predicate node. Therefore, performing the arithmetic shown to the right of the connection matrix provides complexity.

4.4.4
Condition Testing

Condition testing is a test case design method that exercises the logical conditions contained in a program module.

The condition testing method focuses on testing each condition in the program.

Advantages of condition testing:

1. Measurement of test coverage of a condition is simple.

2. The test coverage of conditions in a program provides guidance for the generation of additional tests for the program.

Condition testing strategies:

· Branch testing: This is the simplest condition testing strategy. For a compound condition C, the true and false branches of and every simple condition in C need to be executed atleast once.

· Domain testing: This requires three or four tests to be derive for a relational for a relational expression.

· BRO (Branch and relational operator) testing: This technique guarantees the detection of branch and relational operate errors in a condition provided that all Boolean variables an relational operators in the condition occur only once and have no common variables.

 4.4.4 Data flow testing

The data flow testing method selects test paths of a program according to the locations of definitions and uses of variables in the program.

For a statement with S as its statement number,
DEF(S) = {X| statement S contains a definition of X}
USE(S) = {X| statement S contains a use of X}

If statement S is an if or loop statement, its DBF set is empty and its USE set is based on the condition of statement S.

A definition - use (DU) chain of variable X is of the form [X,S,S’], where S and S’ are statement numbers, X is in DEF(S) and USE(S’), and the definition of X in statement S is live at statement S’.

One simple data flow testing strategy is to require that every DU chain be covered at least once. This strategy is referred to as the DU testing strategy.

Data flow testing strategies are useful for selecting test paths of a program containing nested if and loop statements.

Since the statements in a program are related to each other according to the definitions and uses of variables, the data flow testing approach is effective for error detection.

Problem

Measuring test coverage and selecting test paths for data flow testing are more difficult.
4.5 STRUCTURAL TESTING

In structural testing, the development of test cases are based upon the structure of the code under testing. There are several classes of testing depending on how thorough and time demanding the process of testing has to be. The structural testing may follow stronger testing or complementary testing strategy. The testing strategy is said to be stronger than another, if all types of errors detected by the first testing strategy (say B) are also detected by second testing strategy (say A) and the second strategy additionally detects some more types of errors. When two testing strategies detect errors that are different at least with respect to some types of errors they are called as complementary strategy. The basic categories of structural testing are statement, branch and path coverage tests.

4.5.1 Statement Coverage

Statement coverage, the weakest form of testing, requires that every statement in the code has been executed at least once. Consider the following part of the code which is used to compute the absolute value of Y :

[image: image6.emf]
The test case which is derived is just to execute all the statements alteast once in the program code. Here, if the value of y = 0 then it executes all the statements but by assigning a different value to y, the result is incorrect. For example, if a negative value is assigned to Y, then the absolute value is also negative. Similarly, if a positive value is assigned to Y, then the absolute value is negative but it is logically incorrect.

4.5.2
Branch Coverage

In the branch coverage-based testing strategy, test cases are designed to make each branch condition assume true and false values in turn. Branch testing is also known as edge testing as in this testing scheme, each edge of a program’s control flow graph is traversed atleast once. As this type of testing focuses on exercising branches of decision box, it is also referred to as a decision coverage criterion.

4.5.3
Condition Coverage

In the condition coverage form of structural testing, every branch must be involved atleast once and all possible combinations of conditions in decisions must be exercised.

While the branch coverage is stronger than statement coverage, it is not capable of capturing faults associated with decision carried out in presence of multiple conditions. Consider the following code segment.

if ((x < level-2) && (y > level-1)

{

z = compute (x, y); else z = compute-alter (x, y);

}

Consider the test cases:

x = –4, y = 10 Test Case – I x = –6, y = 12 Test Case – II

In the first case, consider that the decision box returns the value false, then one part of the code segment is executed and by executing the second test case, the value returned is true, then remaining part of the code segment is executed. This interesting situation is illustrated in the Fig. 4.6.

Stands for the Control flow of execution

If the fault has been associated with the compound condition of the decision box, it becomes undetected. Thus the decision testing should be augmented by the requirement of exercising all sub conditions occurring in the decision box. Since the decision box involves two sub conditions, two additional pairs to be exercised (true, false) and (false, true).

[image: image7.emf]
Fig.4.6 Condition Coverage

The four test cases in this example meet the requirements of condition coverage. However, that multiple condition coverage may be quite challenging. If each sub condition is viewed as a single input, then this multiple input condition coverage testing is analogous to exhaustive testing. If there is ‘n’ sub conditions then it requires 2n test cases. This may not be feasible if “n” gets relatively high. If the value of ‘n’ is small, the conditions / branch testing remains feasible. If it becomes impractical to generate test cases meeting the condition / branch coverage criteria, then some modifications are made to the condition coverage criterion in order to reduce the number of required tests.

4.5.4
Path Coverage

The path coverage-based testing strategy required us to design test cases such that all linearly independent paths in the program are executed atleast once. A linearly independent path can be defined in terms of the control flow graph (CFG) of a program. White box testing is intended to uncover errors of the following categories -

(i) logic errors and incorrect assumptions are inversely proportional to the probability that a program path will be executed.

(ii) Typographical errors are random. Many will be uncovered by syntax and type checking mechanisms, but others may go undetected until testing begins.

The path coverage criterion considers all possible logical paths in a program and leads to test cases aimed at exercising a program along each path. This leads us to the concept of the path coverage criterion. In many cases, this criterion can be too impractical, especially when it comes to loops in the program that may easily lead to a very high number of paths.

4.6 BLACK BOX TESTING

Black – Box testing is also called as behavioral testing. This focuses on the functional requirements of the software. Black – Box testing enables the software engineer to derive sets of input conditions that will fully exercise all functional requirements for a program. It is likely to uncover a different class of errors than white-box methods.

Errors found by black-box testing:

1. Incorrect or missing functions.

2. Interface errors.

3. Errors in data structures or external data base access.

4. Behavior or performance errors.

5. Initialization and termination errors.

Black - box testing relies on the specification of the system or component which is being tested to derive test cases. The system is a ‘black box’ whose behavior can only be determined by studying its inputs and the related outputs.

Various black-box testing methods

1. Equivalence partitioning

2. Boundary value analysis

3. Comparison testing

4. Orthogonal array testing

5. Syntax-driven testing

6. Decision table-based testing

7. Cause-effect graphics in functional testing

4.6.1
Equivalence Partitioning

Equivalence partitioning is a black-box testing method that divides the input domain of a program into classes of data from which test cases can be derived.

Test case design for equivalence partitioning is based on an evaluation of equivalence classes for an input condition.

The input data to a program usually fall into a number of different classes. These classes have common characteristics, for example positive numbers, negative numbers, strings without blanks, and so on. Programs normally behave in a comparable way for all members of a class. Because of this equivalent behavior, these classes are sometimes called equivalence partitions or domains.

A systematic approach to defect testing is based on identifying a set of equivalence partitions which must be handled by a program. Test cases are designed so that the inputs or outputs lie within these partitions.

Guidelines for defining equivalence classes:

1. If an input condition specifies a range, one valid and two invalid equivalence classes are defined.

2. If an input condition requires a specific value, one valid and two invalid equivalence classes are defined.

3. If an input condition specifies a member of a set, one valid and one invalid equivalence class are defined.

4. If an input condition is boolean, one valid and one invalid class are defined.

Test cases for each input domain data item can be developed and executed by applying the guidelines for the derivation of equivalence classes. Test cases are selected so that the largest number of attributes of an equivalence class are exercised at once.

4.6.2
Boundary Value Analysis

A great number of errors tend to occur at the boundaries of the input domain rather than in the ‘center’. So, boundary value analysis (BVA) has been developed as a testing technique. BVA leads to a selection of test cases that exercise bounding values.

BVA leads to the selection of test cases at the ‘edges’ of the class. Rather than focusing solely on input conditions, BVA derives test cases from the output domain as well.

Guidelines for boundary value analysis

1. If an input condition specifies a range bounded by values a and b, test cases should be designed with values a and b and just above and just below a and b.

2. If an input condition specifies a number of values, test cases should be developed that exercise the minimum and maximum numbers. Values just above and below minimum and maximum are also tested.

3. Apply guidelines 1 and 2 to output conditions.

4. If internal program data structures have prescribed boundaries, be certain to design a test case to exercise the data structure at its boundary.

4.6.3
Comparison Testing

When reliability of software is absolutely critical, redundant hardware and software are often used to minimize the possibility of error. In such situations, each version can be tested with the same test data to ensure that all provide identical output. These independent versions form the basis of a black-box testing technique called comparison testing or back-to-back testing.

If the output from each version is the same, it is assumed that all implementations are correct. If the output is different, each of the applications is investigated to determine if a defect in one or more versions is responsible for the difference. In most cases, the comparison of outputs can be performed by an automated tool.

Problem in comparison testing:

1. Comparison testing is not foolproof. If the specification from which all versions have been developed is in error, all versions will likely reflect the error.

2. If each of the independent versions produces identical but incorrect results, condition testing will fail to detect the error.

4.6.4
Orthogonal array testing

Orthogonal array testing can be applied to problems in which the input domain is relatively small but too large to accommodate exhaustive testing. The orthogonal array testing method is particularly useful in finding errors associated with region faults - an error category associated with faulty logic within a software component.

When orthogonal array testing occurs, an L9 orthogonal array of test cases is created. The L9 orthogonal array has a ‘balancing property’. That is, test cases are ‘dispersed uniformly throughout the test domain’. Test coverage across the input domain is more complete.

The orthogonal array testing approach enables us to provide good test coverage with fewer test cases than the exhaustive strategy.

 4.6.5
Syntax-Driven Testing

This type of testing is suitable for the specifications which are described by a certain grammar. This holds good for compilers and syntactic pattern classifiers. Here the formal specifications of such systems are expressed in a standard BNF notation or production rules, the generation of test cases follows a straight forward approach. Generate test cases such that each production rule is applied atleast once.

Consider the grammar of simple arithmetic expression described as below:

[image: image8.emf]
The set of test cases for syntax-driven testing contains expressions that exercise the above rules. Sample expressions along with corresponding production rules being exercised by the expressions are given in Fig. 47.

[image: image9.emf]
Fig. 4.7 Test Cases and Tested Production Rules

 Depending upon the production rules, each statement will be tested.

4.6.6
Decision Table-Based Testing

This testing is implemented when the original software requirements have been formulated in the format of “if-then” statements. For instance, a test editor falls under the category of software systems suitable for this type of testing.

Form of a Rule – If (cond1 and cond2 and cond n) then action i

A decision table is made of a number of columns which has all the test requirements. The upper part of the column contains conditions that must be satisfied. The lower portion of a decision table specifies the action that results from the satisfaction of conditions in a rule. A sample decision table is given below in Fig. 4.8.

[image: image10.emf]
Fig. 4.8 Sample Decision Table

Example 1: Toy Text editor

A Toy Text editor has the following functions. Copy, Paste, Boldface, Underline and Select. The conditions in the text editor identify editing actions to be completed. Editing actions are performed when the conditions are satisfied. A decision table for the toy editor is illustrated in Fig. 4.9.
[image: image11.emf]
Fig. 4.9 Toy Text Editor Decision Table

Consider the number of conditions (n=4), then to construct the complete decision table, 16 columns are needed. Note that a text needs to selected prior to any further action taken.

A sample transposed decision is described as below in Fig. 4.10. This table can be transposed and can be successfully traced.

	Conditions (Text Editing Functions Selected)
	Actions

	Copy
	Paste
	Underline
	Boldface
	Copy
	Copy
	Underline

	1
	0
	0
	0
	1
	0
	0

	0
	1
	0
	0
	0
	1
	0

	0
	0
	1
	0
	0
	0
	1

Fig. 4.10 Transposed Decision Table for Toy Text Editor

Example 2: Liquid Level Control

This is a study of a simple control problem which is designed to check the liquid level. It has two sensors indicating the level of liquid in a container and two halves used as actuators (Fig. 4.11). Sensor 1 is used to check the upper acceptable level of the liquid. If the liquid level exceeds, then the value will be automatically set to 1. Sensor 2 is used to check the lower acceptable level of the liquid. If the liquid level is within the range, then the sensor will be at zero. The decision table is constructed considering these constraints and the table will be verified with the test cases. The control rules are straight forward.

[image: image12.emf]
Fig. 4.11 Sample Liquid Level

(i) If sensor 1 is active (too high to the level of liquid). then open output value.

(ii) If sensor 2 is active (too low to the level of liquid). then open input value.

Here, n = 2 (no of conditions) so, 4 columns are involved in constructing the decision table. Since the decision table has 4 columns, 4 test cases are generated and executed atleast once. Even for modest values of “n”, the resulting decision table could become fairly large. Considering the main constraints, the decision table can be minimized.

4.6.7
Cause-Effect Graphs in Functional Testing

The main disadvantages of the generic method of decision table is that all inputs are considered separately eventhough the requirements strongly suggest another way of handling the problem of testing. The independence of input is also assumed in boundary value analysis and equivalence class partitioning.

These disadvantages have been overcomed in cause-effect graphs. It represents the relationship between specific combination of inputs and outputs. These specific cases rather than all possible combinations helps to avoid combinational explosion associated with any standard decision table. The inputs (causes) and outputs (effects) are represented as nodes of a cause-effect graph. In such a graph, a number of intermediate nodes linking causes and effects in the formation of a logical expression. Example : Simple automated teller machine (ATM) banking transaction system.

The list of causes and effect for an ATM are as follows:

Causes

C1 : Command is Credit
C2 : Command is Debit

C3 : Account number is valid
C4 : Transaction amount is valid

Effects

E1 : Print “invalid command”

E2 : Print “invalid account number”
E3 : Print “debit amount not valid”
E4 : Debit account

E5 : Credit
account

First, considering the problem statements, construct the causes and effects. The number of nodes required depend upon the causes and effects. The nodes in the input and output layers are connected by either “and” or “or” operators.

The negation symbol () is placed over the connection states that the effect is true once the associated node is false. The cause-effect graph is shown in the Fig. 4.12. Table 4.1.

Summarizes the meaning of these operators.

[image: image13.emf]
Fig. 4.12 Cause-Effect Graph

	Type of Processing Mode
	Description

	and or
negation
	Effect occurs if all the I/P’s are true (1) Effect occurs if atleast one I/P is true (1) Effect occurs if I/P are false (0)

Table 4.1 Description of Processing Nodes Using in a Cause-Effect Graph

Description of Processing Nodes

The cause-effect graph helps to determine the corresponding test cases. From the graph, the conditions for the effect can be derived. For examples, E3 will be executed only if C2, C3 are true and C4 is false and it does not bother about the value of C1.

The cause which has no impact on the effect can be regarded as don’t care (x) condition This observation chiefly reduces as size of the induced decision table

[image: image14.emf]
Fig. 4.13 Determining Cause for Effect E3

The resulting column in the decision table to be used in the construction of the test cases reads as

C1
0
1
x
x
1

C2
0
x
1
1
x

C3
x
0
1
1
1

C4
x
x
0
1
1

E1
1
0
0
0
0

E2
0
1
0
0
0

E3
0
0
1
0
0

E4
0
0
0
1
0

E5
0
0
0
0
1

Fig. 4.14 ATM Cause-Effect Decision Table

From the above table, E 3 does not depend upon C1 since C1 value is not needed to get the output of E3. If don’t care (x) conditions were not considered, the resulting portion of the decision table will contain 2 columns involving an enumeration of the values of C1. If the decision table has to be reduced, then a back tracking mechanism is followed.

· In tracing back through an “or” node whose output is true, we use only input combinations that have only one true value.

for eg – Three causes (a, b and c) affecting the or node. <a=true, b=false, c=false>,

<a=false, b=true, c=false>, <a=false, b=false, c=true>.

· In tracing back through an “and” node whose output is false, we use only input combinations that have only a single false value.

for eg. – Three causes (a, b and c) affecting the and node. <a=false, b=true, c=true>,

<a=true, b=false, c=true>, <a=true, b=true, c=false>.

The cause-effect graphs can be augmented by incorporating additional constriants between inputs.

This helps to reduce the number of test cases as one constraints between the variables and some potential combinations of inputs are ruled out from the testing procedure.

4.7. Regression Testing

· Regression Testing is defined as a type of software testing It confirms a recent change in the program affected existing features. Itis a partial selection of already executed test cases which are re-executed to ensure existing functionalities.

· It Increases the chances of detecting bugs.

· It helps in identifying undesirable side effects that might have been caused due to new operating environment.It ensures better performing software due to early identification of bugs and errors

Types of regression testing:

Some of the common types of regression testing include:

1) Corrective regression testing:

· This regression testing is used when there are no changes in the software.

· The existing test cases can be easily reused to conduct the desired test.

2) Retest-all regression testing:

· This testing involves all aspects of testing of a particular product as well as reusing all test cases.

· This type of regression testing is not need where there is a small change.

3) Selective regression testing:

· It is done to analyze the impact of new code added to the already existing code,

· This type of regression testing is conducted in a subset from the existing test cases.It reduces the effort required for retesting and the cost involved.

4) Progressive regression testing:

· This testing works effectively when there are certain changes done in the program specifications.

· This testing helps in ensuring that,there are no features that exist in the previous version.

5) Complete regression testing:

· This testing is used in case of multiple changes that have been done to the already existing code.

· This type of testing is specifically used when there is a new change has certain impact on the root code of the software.

Need of Regression Testing:

· Regression Testing is required when there is a Change in requirements and code is modified.

· When there is New feature is added to the software

· Defect fixing

Regression Testing Techniques

Software maintenance is an activity which includes enhancements, error corrections, optimization and deletion of existing features. Regression Testing can be carried out using following techniques:

Reset all:

· This is one of the method for Regression Testing in which all the tests should be re-executed.

· This is very expensive and requires huge time and resources.

Regression Test Selection:

There are two types of test cases

1) Reusable Test Cases:

Re-usable Test cases can be used in succeeding regression cycles.

2) Obsolete Test Cases:

Obsolete Test Cases can't be used in succeeding cycles.

Prioritization of Test Cases:

Prioritize the test cases depending on business impact, critical & frequently used functionalities. Selection of test cases based on priority will greatly reduce the regression test suite.

Effective Regression Tests can be done by the following,

· Integration Test Cases

· Complex Test Cases

· Boundary value test cases

· Sample of Successful test cases

· Sample of Failure test cases

· Regression Testing Tools

Following are most important tools used for both functional and regression testing:

· Selenium: Selenium can be used for browser based regression testing.

· Quick Test Professional (QTP): HP Quick Test Professional is automated software designed to automate functional and regression test cases.

· Rational Functional Tester (RFT): This is primarily used for automating regression test cases and it also integrates with Rational Test Manager.

4.8 UNIT TESTING

Unit Testing is under taken when a module has been coded and successfully reviewed. Using the component. level design description as a guide, important control paths are tested to uncover errors within the boundary of the modules. The unit test is white-box oriented and the step can be conducted in parallel for multiple components.

4.8.1
Unit Test Considerations

The tests that occur as part of unit tests are illustrated in the diagram. The module interface is tested to ensure that information properly flows into and out of the program unit under test. The local data structure is examined to ensure that data stored temporarily maintains its integrity during all steps in an algorithmic execution. All independent path through the control structure are exercised to ensure all statements in a module and all error handling paths are tested.

Tests of data flow across a module interface are required before any other test is initiated. Selective testing of execution paths is in essential task during the unit test. The more common errors in computation are:

1. Misunderstood or in correct arithmetic procedure

2. Mixed mode operation

3. Incorrect initialization

4. Precision inaccuracy

5. Incorrect symbolic representation of
an expression

Test cases should uncover errors such as

1. Comparison of different data types

2. Incorrect logical operator or precedence

3. Expectation of equality when precision error makes equality unlikely.

4. Incorrect comparison of variables

5. Improper or non existent loop termination

6. Failure exit

7. Improperly modified loop variables

Good design dictates that error conditions be anticipated and error-handling paths set upto reroute when an error occurs. This approach is called antibugging.

Among the potential errors that should be tested when error handling is evaluated are

1. Error description is unintelligible

2. Error noted does not correspond to error encountered.

3. Error condition causes system intervention prior to error handling.

4. Exception-condition processing is incorrect.

5. Error description does not provide enough information to assist in the location of the cause of the error.

Test cases that exercise data structure, control flow and data values just below, at and just above maxima and minima are very likely to uncover errors. It is shown in Fig. 4.15

[image: image15.emf]
Fig. 4.15 Unit Test

4.8.2
Unit Test Procedures

After source level code has been developed, reviewed and verified for correspondence to component level design, unit test case design begins. Each test case should be coupled with a set of expected results. Since a component is not a stand-above program, driver and / or stub, software must be developed for each unit test. The unit test environment is given below in Fig. 4.16.

In order to test a single module, we need a complete environment to provide all that is necessary for execution of the module.

· The procedure
belonging to other
modules that the module under
test calls.

· Non local data structures that the module accesses

· A procedure to call the functions of the module under test with appropriate parameters.

[image: image16.emf]
Fig. 4.16 Unit Test Environment

Stubs and drivers are designed to provide the complete environment for a module. The role of the stub and driver modules is diagrammatically shown in the figure below in Fig.4.17. A stub procedure is a dummy procedure that has the same I/O parameters as the given procedure but has a highly simplified behaviour. For example a stub may produce the expected behaviour using a simple table look-up mechanism. A driver module would contain the non local data structures accessed by the module under test and also have the code to call the different functions of the module with appropriate parameter values.

[image: image17.emf]
Fig. 4.17 Role of the Stub & Driver

Unit testing is simplified when a component with high cohesion is designed. When only one function is addressed by a component, the number of test cases is reduced and errors can be most easily predicted and uncovered.

4.9 INTEGRATION TESTING

The primary objective of integration testing is to test the module interfaces in order to ensure that there are no errors in the parameter passing, when one module involves another module. Integration testing is a systematic technique for constructing the program structure while at the same time conducting tests to uncover errors associated with interfacing. There is often a tendency to attempt non incremental integration, that is, to construct the program using a “big bang” approach.

In the Incremental integration, the program is constructed and tested in small increments, where errors are easier to isolate and correct; interfaces are more likely to be tested completely and a systematic test approach may be applied.

4.9.1
Top down Integration

Top down Integration testing is an incremental approach to construction of program structure. Modules are integrated by moving downward through the control hierarchy, beginning with the main control module either in a depth-first or breadth first manner.

The Fig. 4.18 is depth first integration would integrate all components on a major control path of the structure. For example, the selection components will be M1, M2,

M5 and M8 or M6 integrated first. In the case of Breadth first integration all components directly subordinate at each level, moving across the structure horizontally. (eg.) M2, M3 and M4 and the next control level M5, M6 and so on.

[image: image18.emf]
Fig. 4.18 Depth First Integration

The integration process is performed in five
steps as follows:

1. The main control module is used as a test driver and stubs are substituted for all components.

2. Depending on depth or breadth first approach, subordinate stubs are replaced one at a time with actual components.

3. Test are conducted as each component is integrated.

4. On completion of each set of tests, another stub is replaced with the real component.

5. Regression testing may be conducted to ensure that new errors have not been introduced.

The top-down integration strategy verifies major control  decision points early in the test process. Top-down strategy sounds relatively uncomplicated, but in practice. Logistical problem can arise. The most common of these problems occurs when processing at low levels in the hierarchy is required to adequately test upper levels. The tester is left with three choices.

1. Delay many tests until stubs are replaced with actual modules.

2. Develop stubs that perform limited functions that simulate the actual module.

3. Integrate the software form the bottom of the hierarchy upward.

A disadvantage of the top-down integration testing is that in the absence of lower-level routines, many a times it may become difficult to exercise the top level routines in the desired manner since the lower level routines perform several low-level functions such as I/O.

4.9.2
Bottom up Integration

Bottom up Integration begins construction and testing with atomic modules (i.e. components at the lowest level in the program structure). A bottom up integration strategy may be implemented in following steps.

1. Low-level components are combined into clusters that perform a specific software sub function.

2. A driver (a control program for testing) is written to co-ordinate test case input and output.

3. The cluster is tested.

4. Drivers are removed and clusters are combined moving upward in the program structure.

Integration follows the pattern as shown in the Fig.4.19. Components are combined to form clusters 1, 2 and 3. Each of the clusters is tested using a driver. Components in cluster 1 and 2 are subordinate to Ma. Drivers D1 and D2 are removed and the clusters are interfaced directly to Ma. Similarly, driver D3 for cluster is removed prior to integration with module Mb. Both Ma and Mb are integrated with Mc and so on.

If the top two levels of program structure are integrated top down, the number of drivers can be reduced substantially and integration of clusters is greatly simplified.

[image: image19.emf]
Fig. 4.19 Bottom up Integration

4.9.3
Regression Testing

The intent of regression testing is to rerun automatically some tests for a software whenever a slight change to the product has been made.

There are two main activities of regression testing.

1. Capturing a test for replay. The rule is that one goes for a suite of strong tests.

2. Comparing new outputs with old ones to make sure that there are no unwanted changes.

The two steps in regression testing are run automatically in the back ground. For effective regression testing, some auxiliary arrangement of the test suite must be accomplished. The effectiveness of regression testing is expressed in terms of two conditions.

1. How hard it is to construct and maintain a suite of respective tests.

2. How reliable the system of regression testing is capture / playback tools enable the software engineer to capture test cases and results for subsequent playback and comparison. As integration testing proceeds, the number of regression tests can grow quite large. Therefore, the regression test suite should be designed to include only those tests that address one or more classes of errors in each of the major program functions. It is impractical and inefficient to re-execute every test for every program function once a change has occurred.

4.9.4
Smoke Testing

Smoke testing is an integration testing approach that is designed as a pacing mechanism for time-critical projects, allowing the software team to assess its project on a frequent basis. Smoke testing approach involves the following activities.

1. Software components that are translated into code are integrated into a “build”.

A build includes all data files, libraries, reusable modules and engineered components that are required to implement one or more product functions.

2. A series of tests is designed to expose errors that will keep the build from properly performing its function.

3. The build is integrated with other builds and the entire product is smoke tested daily. The integration approach may be either top-down or bottom up.

Smoke testing provides a number of benefits when it is applied on complex, time-critical software engineering projects.

1. Integration risk is minimized.

2. The quality of the end-product is improved.

3. Error diagnosis and correction are simplified.

4. Progress is easier to assess.

4.9.5
Comments on Integration Testing

Selection of an integration strategy depends upon software characteristics and sometimes, project schedule. In general, the combination of top down approach and bottom up approach may be the best compromise. As integration testing is conducted, the tester should identify critical modules. A critical module should have following characteristics

1. Addresses several software requirements

2. Has a high level of control

3. Is complex or error prone.

4. Has definite performance requirements.

Regression tests should focus on critical module function.

4.9.6
Integration Test Documentation

Test documentation contains a test plan, and a test procedure, is a work product of the software process and becomes part of software configuration. An overall plan for integration of the software and a description of specific test are documentation as test specification. The testing phase can be divided for CAD system as follows (1) user iteration

(2) Data manipulation and analysis (3) Display processing and generation (4) Database Management. Program builds (groups of Modules) are created to correspond to each phase. The following criteria and corresponding tests are applied for all test phases:

a. Interface Integrity: Internal and external interfaces are tested as each module is incorporated into the structure.

b. Functional Validity: Tests designed to uncover functional errors are conducted.

c. Information Content: Tests designed to uncover errors associated with local or global data structures are conducted.

d. Performance: Test designed to verify performances bounds established during software design are conducted.

Information maintained will be vital during software maintenance and used to cater the local needs of a software engineering organization.

4.10
VALIDATION TESTING

The final series of software testing is validation testing. Validation can be defined in many ways, but a simple definition is that validation succeeds when software functions in a manner that can be reasonably expected by the customer.

4.10.1
Validation Test Criteria

Software validation is achieved through a series of black box tests that demonstrate conformity with requirements. Test plan and procedure are designed to ensure that all functional requirements are satisfied, all behavioral characteristics are achieved, all performance requirements are attained, documentation is correct and human-engineered and other requirements are met.

 After each validation test case has been conducted, one of two possible conditions exist

1. The function or performance characteristics conform to specification and are accepted.

2. A deviation from specification is uncovered and or deficiency list is created.

4.10.2
Configuration Review

The intent of the review is to ensure that all elements of software configuration have been properly developed, are catalogued and have necessary detail to bolster the support phase of the software life cycle. This can be otherwise called as audit.

4.10.3
Alpha and Beta Testing

When a software is developed for customer, a series of acceptance tests are conducted to validate all requirements. Conducted by the end user rather than software engineers, an acceptance test can range from an informal “test drive” to a planned and systematically executed series of tests. Acceptance testing can be conducted over a period of weeks or months, thereby uncovering cumulative errors that might degrade the system over time. Most software product builders use a process called alpha and beta testing to uncover errors that only the end user seems able to find.

The alpha test is conducted at the developers site by a customer. The software is tested with in the developing organization. Alpha testing is conducted in a controlled environment.

Beta testing is performed by a select group of friendly customers. It is conducted at one or more customer sites by the end-user of the software. Therefore, the beta test is a “live” application of the software in an environment that cannot be controlled by the developer. As a result of problems reported during beta tests, software engineers make modifications and then prepare for release of the software product to the entire customer base.

4.11
SYSTEM TESTING

Software is incorporated with other system elements (eg. hardware, people, information) and a series of system integration and validation tests are conducted. System testing is actually a series of different tests whose primary purpose is to fully exercise the computer based system. There are many tests conducted to assure that it meets all its requirements.

4.11.1
Recovery Testing

Recovery Testing is a system test that forces the software to fail in different conditions and verifies that recovery is properly performed. Many computer system must recover from faults and resume processing within a prespecified time. (eg.) fault tolerant systems. If the recovery is automatic, reinitialization, check pointing mechanisms, data recovery and restart are evaluated for correctness. If recovery requires human intervention, the mean-time-to- repair (MTTR) is evaluated to determine whether it is within acceptable limits.

4.11.2
Security Testing

Security testing attempts to verify that protection mechanisms built into a system. Any computer based system that manages sensitive information or causes actions that can improperly harm individuals is a target for improper or illegal penetration. (e.g) hackers who attempt to penetrate system for sport for personal gain.

During security testing, the tester plays the role of the individual who desires to penetrate the system. The tester may attempt to acquire passwords through external clerical ways such as using hacking software and may purposely cause system errors or may browse through in secure data. The role of the system designer is to make penetration cost more than the value of the information that will be obtained.

4.11.3
Stress Testing

Stress testing is also known as endurance testing. Stress testing evaluates system performance when it is stressed for short periods of time. Stress tests are designated to confront programs with abnormal situations.

Stress testing executes a system in a manner that demands resources in abnormal quantity, frequency or volume. For example (1) special tests may be designed that generate ten interrupts per second when one or two is the average rate. (2) input data rates may be increased by an order of magnitude to determine how input functions will respond. (3) test cases that require maximum resources (4) test cases that may cause thrashing in a virtual operating system (5) test cases that may cause excessive hunting for disk-resident data are created.

A variation of stress testing is a technique called sensitivity testing. It attempts to uncover data combinations within valid input classes that may cause instability or improper processing.

4.11.4
Performance Testing

Performance testing is carried out to check whether the system meets the non functional requirements identified in the SRS document. All performance tests can be considered as black box tests. Performance testing is designed to test the run-time performance of software within the context of an integrated system. Performance tests are often coupled with stress testing and usually require both hardware and software instrumentation.

External instrumentation can monitor execution intervals, log events (eg.interrupts) as they occur and sample machine states on a regular basis. By instrumenting a system, the tester can uncover situations that lead to degradation and possible system failure.

4.12
DEBUGGING

Software testing is a process that can be systematically planned and specified. Test case design can be conducted, a strategy can be defined and results can be evaluated against prescribed expectations.

Debugging occurs as a consequence of successful testing. When a test case uncovers an error, debugging is the process that results in the removal of the error.

4.12.1 Debugging Process

Debugging is not testing but always occurs as a consequence of testing. The following are some general guidelines for effective debugging.

1. Debugging requires a thorough understanding of the program design.

2. Debugging may sometimes even require full redesign of the system.

3. One must be very clear of the possibility that any one error correction may introduce new errors.

The following Fig.4.20 represents the process of debugging.

Debugging process begins with the execution of a test case. Results are assessed and a comparison is made between expected and actual performance. The debugging process will always have one of two outcomes.

1. The cause will be found and corrected.

2. The cause will not be found

Debugging refers to error corrections. These are the characteristics of bugs provide clues.

1. Symptom may disappear when another error is corrected.

2. Symptom may actually be caused by non errors.

3. Symptom may be caused by human error that is not easily traced.

4. It may be difficult to accurately reproduce input conditions.

5. Symptom may be a result of timing problems, rather than processing problems.

As the consequences of an error increase, the amount of pressure to find the cause also increases.

[image: image20.emf]
Fig. 4.20 The Debugging Process

4.12.2
Debugging Approaches

Debugging has one overriding objective to find and correct the cause of a software error. The objective is realized by a combination of systematic evaluation, intuition and luck.

Three categories for debugging approaches may be proposed.

1. Brute Force

2. Back Tracking

3. Cause Elimination

The brute force category of debugging is probably the most common and least efficient method for isolating the cause of a software error. This method is effective when all else fails.

Backtracking is a fairly common debugging approach that can be used successfully in small programs. If the error is not debugged, then the source code is traced backward until the site of the cause is found. As the number of source line increases, the number of potential backward paths may become large.

The third approach to debugging - cause elimination - is manifested by induction or deduction and introduces the concept of binary partitioning data related to the error occurrence are organized to isolate potential cause. A ‘cause hypothesis’ is devised and solution is derived.

Each of these debugging approaches can be supplemented with debugging tools. They are debugging compilers, dynamic debugging aids, automatic test case generators, memory dumps and cross reference maps etc. There are three simple questions that the software developers should ask before correcting the errors.

1) Is the cause of the bug reproduced in another part of the program ?

2) What “next bug” might be introduced by the fix I’m about to make ?

3) What could we have done to prevent this bug in the first place.

Debugging is a straight forward application of the scientific method that has been developed in early stages itself. The basis of debugging is to locate the problems source and the way to correct the errors.

4

